Forum Tool, Mould & Fixture Making

TUESDAY, 5 JUNE 2018

Location: CongressCenter, ground floor, Room Carl Zeiss left


Advice: You can export your favourite lectures directly into your personal calender. Choose the lecture by ticking the box on the right side and then click the download button on the top of the schedule. Please export only one date at a time. 

 
 
 
 
08:30 - 09:30
Check-In
09:30 - 09:35
Welcome Carl-Zeiss Saal
09:35 - 10:30

Additive manufacturing processes (AM) have been used for prototyping in experimental
vehicle construction and development for almost 30 years, and have become
established techniques in these fields. The BMW Group is not only considered
an early adopter in this area, having used these technologies since the beginning,
but also an established partner when it comes to identifying new potential fields
for the latest AM technologies and materials.
In recent years, the company has been working hard to implement a strategic
roadmap to move both plastic-based and metal-based AM processes on to the
next logical step – from prototyping to series production. The company’s objective
here has not been to create showcase examples, but rather to apply the specific
benefits of the techniques in a targeted way – for substituting tools in small batch
production, for customisation, and for designing components that are tailored to
the loads and processes involved in series production.
A number of pilot projects have already shown where AM processes could be used
in the creation of customer components. Meanwhile, additive manufacturing has
become an important pillar in the digitalisation strategy of the BMW Group’s production
network that will enable it to manufacture products sustainably and efficiently
going forward. By working with new start-ups and innovative partners in the AM sector,
the company is seeing increases in quality, efficiency and in the number of areas
it can use these processes. It is perhaps no surprise that the BMW Group therefore
sees it as essential to remain a pioneer in the field of additive manufacturing.
This talk will explain how the use of AM technologies is gradually being driven
forward into series production. As well as the technical and economic aspects,
it will also discuss strategic productive investments and partnerships, and show
how client projects in this field are being developed and supported with a focus on
delivering end customer-quality components.

Keynote 1
Dr Dominik Rietzel | BMW Group

Herr Dr.-Ing. Dominik Rietzel studierte an der TU München Chemieingenieurwesen mit der Vertiefungsrichtung Werkstoffe und deren mechanische Eigenschaften. Seine Diplomarbeit befasste sich mit der Qualifizierung von Kunststoffen für medizinische Anwendungen und wurde mit dem DIN Preis für Standardisierung ausgezeichnet. Die Dissertation mit dem Titel "Werkstoffverhalten und Prozessanalyse beim Laser-Sintern von Thermoplasten" fertigte er in der Zeit von 2007 bis 2011 am Lehrstuhl für Kunststofftechnik (LKT) der Friedrich-Alexander-Universität Erlangen-Nürnberg an. Die erlangten Erkenntnisse können besonders zur Qualifizierung und Verbesserung der Verarbeitbarkeit neuer Thermoplaste genutzt werden, da sie einen Einblick in die fundamentalen Zusammenhänge des Schmelz- und Kristallisationsvorgangs bei pulverbettbasierten Verfahren geben. Herr Rietzel gehörte diversen Normungsgremien an und konnte als stellvertretender Leiter der VDI Fachausschusses "Additive Manufacturing - Kunststoffe" dazu beitragen die erste Richtlinie zur Güteüberwachung von Laser-Sinterbauteilen (VDI 3405 Blatt 1) zu realisieren.
Nach seiner Promotion sammelte er erste industrielle Erfahrungen in der Automobilbranche bei der MAN Truck & Bus GmbH, wo er zuletzt die "Qualitätssicherung, Korrosionsschutzlinie und Lackdisposition" in der Fahrerhauslackiererei verantwortet hat. Auch in dieser Zeit befasste er sich weiter mit der Additiven Fertigung und war unter anderem als Berater für Anlagenhersteller in AM Bereich tätig.
Mit seinem Wechsel zur BMW Group legte er seinen Schwerpunkt wieder auf AM Technologien und deren Anwendungen im automobilen Umfeld. Dabei war er unter anderem für die Integration neuer Technologien in die Fertigung (z.B. MJF oder CLIP) verantwortlich. In dieser Vorentwicklungstätigkeit konnten die ersten Ansätze geschaffen werden für die Personalisierung von Produkten, wie beispielsweise dem Side Scuttle oder der Dekorblende von MINI, welche in 2018 mit „MINI Yours Customised“ in Serie gegangen sind. Seit 2016 leitet Herr Rietzel im Additive Manufacturing Center der BMW Group die Fachabteilung Nichtmetalle und ist dort für die F&E Aktivitäten, den Prototypenbau sowie die Serienproduktion verantwortlich.

10:30 - 11:00
Break
Session 1
Presentation: Dietmar Frank, EOS GmbH
11:00 - 11:30

The wire arc-based additive manufacturing enables a so far impossible efficient and cost-effective production of small series starting from batch size 1. As the first additive process ever the 3DMP® process allows the economical production of even simple components - even in direct comparison with conventional machining methods. The 5-axis additive machining results in a wide variety of geometrical degrees of freedom while at the same time previously necessary support structures can be prevented, so that optimum material utilization is guaranteed.
These versatile options can now be considerably extended by the subtractive machining unit upgradable on GEFERTEC machines, since - in combination with the specially adapted CAM software - it is now possible to carry out subtractive machining steps alternating with additive machining. In this way, it is possible to specifically process areas that cannot or only very laboriously be processed later in the production process. These include, for example, cooling channels and other hollow structures.
The subtractive processing can be integrated individually in the additive manufacturing process, so that a higher component quality can be achieved with optimal cost-effectiveness.
As part of the presentation presented here, the structure and technological possibilities of the retrofit solution and the CAM software will be explained in more detail.

Lecture 1/1
Georg Fischer | GEFERTEC GmbH

Werdegang:
Jul. 2001 Abitur am Elisabeth-Gymnasium Eisenach
Okt. 2001 - Sep. 2002 Studium Chemie an der Georg-August-Universität Göttingen
Okt. 2002 - Dez. 2006 Studium Maschinenbau an der Technischen Universität Ilmenau, Vertiefungsrichtung Produktionstechnik und Logistik
Dez. 2006 Diplomarbeit: „Lasersynthese nanostrukturierter Keramiken aus flüssigen Precursoren“
Jan. 2007 DGQ-Zertifikat: „Quality Systems Manager Junior“
Mrz. 2007 Förderpreis Maschinenbau 1. Klasse für die Diplomarbeit „Lasersynthese nanostrukturierter Keramiken aus flüssigen Precursoren“
Jan. 2007 - Dez. 2007 Wissenschaftlicher Mitarbeiter im Fachgebiet Fertigungstechnik der Technischen Universität Ilmenau - Schwerpunkt Nanotechnologie
Jan. 2008 - Aug. 2008 Wissenschaftlicher Mitarbeiter im Fachgebiet Füge- und Beschichtungstechnik der Technischen Universität Berlin - Schwerpunkt Nanotechnologie
Sep. 2008 - Jun. 2011 Entwicklungsingenieur bei der pro-beam technologies GmbH, Halle (Saale), ab Jan. 2011 pro-beam technologies GmbH, Burg - Schwerpunkt Prozessentwicklung
Sep. 2009 - Nov. 2009 Zusatzausbildung „International Welding Engineer (IWE)“ an der Schweißtechnischen Lehr- und Versuchsanstalt Halle (Saale)
Jul. 2011 - Mai 2015 Wissenschaftlicher Mitarbeiter im Fachgebiet Füge- und Beschichtungstechnik der Technischen Universität Berlin - Schwerpunkt Elektronenstrahlmaterial-bearbeitung
Jun. 2013-Dez. 2014 Entwicklungsingenieur evobeam GmbH, Nieder-Olm - Schwerpunkt Prozessentwicklung
Seit Okt. 2011 Freiberuflicher Ingenieur - Schwerpunkt Beratung und Schulung Elektronenstrahlanwendungen
Seit Jan. 2015 Geschäftsführender Gesellschafter GEFERTEC GmbH

11:30 - 12:00

Neben der Produktion von Einzelteilen und Kleinserien findet die additive Fertigung von Werkzeugen und Vorrichtungen immer größere Verbreitung. Besonders im Bereich der Kleinserienfertigung in der Größenordnung von 50.000 Teilen eignen sich additiv gefertigte Kunststoffvorrichtungen besonders aufgrund der geringen Kosten und der kurzen Herstellungszeiten. Selbst kleinere Serien sind durch die additive Fertigung rentabel.
Wegen der geringen Infrastruktur der FDM Technologie können Vorrichtungen auch auf engstem Raum in unmittelbarer Nähe zum späteren Einsatzbereich wie der Montagelinie gefertigt werden.
Auch erlaubt die direkte Verwendung digitaler Werkstückdaten und Spannzeugbibliotheken die Integration in die digitale Fertigung.

Lecture 1/2
Frank Schäflein | Stratasys GmbH
12:00 - 12:30

The temperature control of molding tools, in this case injection molding, plays a critical role in the quality of manufactured plastic articles. Key parameters such as shrinkage, warpage, crystallinity, etc. can be significantly influenced by the temperature control concept. Variothermal process control in particular delivers good results in terms of flow path length and part quality. For tools in the small to medium size range, these structures can be additively generated by methods such as selective laser sintering. For large workpieces however, such as automobile bumpers or containers, the currently available manufacturing technologies reach the limits of their geometry. Up to now, it has not been possible to additively manufacture such large-format tools while generating temperature control channels at the same time. This paper presents a method of manufacturing large-scale mold tools with temperature control channels by combining the additive manufacturing techniques of arc welding and diffusion bonding with conventional processes.

Lecture 1/3
Jörg Hildebrand | Forschergruppe "TemGro" (2016 FGR 0035) HS Schmalkalden, ifw Jena, TU Ilmenau

professional life
Since 01/2016 Assistant Professor, Group Production Engineering, Faculty of Me-chanical Engineering, Technische Universität Ilmenau
10/2010 - 12/2015 Junior professor (W1) "Simulation and Experiment", Faculty of Civil Engineering, Bauhaus-Universität Weimar
10/2010 - 12/2015 Scientific Director of the experimental facility, Bauhaus-Universität Weimar
10/2001 - 09/2010 Research Assistant, Chair of Steel Construction, Bauhaus-Universität Weimar - Prof. Dr.-Ing. habil. Frank Werner
05/2000 - 08/2000 Student assistant in subproject A4 "Parameter identification based on FE models" of the special research area 524 "Materials and con-struction for the revitalization of buildings", Bauhaus-Universität Weimar

tertiary education
12/2008 PhD at the Bauhaus-Universität Weimar, Faculty of Civil Engineer-ing: "Numerical welding simulation - Determination of temperature, microstructure and self-stress on welded joints made of steel and glass materials" - Degree: Dr.-Ing., grade "summa cum laude"
10/1996 - 09/2001 Studies at the Bauhaus-Universität Weimar
Study course of civil engineering, Specialization: Structural Engi-neering, Degree: Dipl.-Ing., grade "very good", grade: 1,4

civilian service
07/1995 – 09/1996 civilian Service

school education
09/1991 – 08/1995 Neideck-Gymnasium, Arnstadt
Degree: university entrance qualification, grade 1.5
09/1983 – 08/1991 Polytechnische Oberschule „Louis Fürnberg“ Gräfenroda

12:30 - 14:30
Lunch break and visit to the trade show
Session 2
Presentation: Holger Löffler, Vorwerk Elektrowerke GmbH & Co. KG
14:30 - 15:00

Tire mold designs have to consider a balance between tire performance, tire appearance and mold maintenance. While 3D printing of tire molds offers benefits in flexibility and differentiation of tread design, mold venting and process time required for 3D mold printing are severe obstacles in establishing 3D printing as a viable maufacturing technology. Using innovative laser technology for the generation of functional micro slots and its Ventless Twin Shell mold design, Avonisys provides important prerequisites to make mass volume 3D printing of molds economically feasible.

Lecture 2/1
Stephan Mohren | Avonisys AG
15:00 - 15:30

Rapid tooling is a term which is not clearly defined in the literature. The term describes the fast tool production using different manufacturing processes. The categorisation of manufacturing processes for tool production into conventional and additive processes represents a possible approach. A further distinction can be made between direct and indirect processes along the process chain for tool manufacture. Direct Polymer Additive Tooling encompasses the direct additive production of moulds and inserts from polymer materials for various final component manufacturing processes.
The comparative study presented here demonstrates the economic potential of additive manufactured polymer injection moulds, taking into account mechanical and thermal performance of the moulds and the resulting part quality.
PolyJet technology was used to 3D-print injection moulding tools in “Digital ABS” and “Rigur”, a conventionally milled tool in aluminium served as a reference. Moulding tests with ABS part material were carried out to determine form stability, surface roughness, tool life and economic potential.
Similar behaviour and part quality were observed for both PolyJet tool materials. The “Rigur” tool lasted 166 cycles before failure, “Digital ABS” more than 250 without failure, but with noticeable tool wear. Moulded parts from both tools achieved dimensional accuracy over all parts produced comparable to the reference. Comparable surface roughness could not be reached. All in all, “Digital ABS” achieves total cost savings of 10 %, “Rigur” of 15 % for the considered application.
Differences in moulded part properties and geometric limits were not investigated. Further investigations will examine resulting moulded part properties and consider geometric limitation of printed polymer tools.
This study provides a direct technological and economic comparison between conventionally milled aluminium tools and additive manufactured polymer moulding inserts. The obtained results show the potential of additive manufactured polymer tools for injection moulding applications.

Lecture 2/2
Peter Ayvaz | PEM der RWTH Aachen University

Studies:
2009-2015: Mechanical engineering studies at RWTH Aachen University and Tsinghua University in Beijing
Focus: Production engineering
2015-2016: Consultant at Boston Consulting Group
Various projects in the mobility, logistics and pharmaceutical industries
Since Oct. 2016: Research Assistant at the PEM of RWTH Aachen University, Group Plastics Components
Research focus: Additive manufacturing in the field of toolmaking

15:30 - 16:00

Die Erzielung einer bestimmten optischen Qualität oder einer ausreichenden Abformung der Oberfläche erfordert eine erhöhte Oberflächentemperatur beim Einspritzen. Um diese Ziele zu erreichen, können Spritzgusswerkzeuge dynamisch temperiert werden, der Einspritzprozess, die Füllung des Werkzeugs wird durch diskretes Aufheizen und der Abkühlprozess wird durch eine Kühlung der Werkzeughälften begleitet. Das Aufheizen und Kühlen der Werkzeughälften sind umso effizienter je näher Kühlung und Heizung an der Werkzeugoberfläche wirkt. Durch die schichtweise additive Fertigung der Werkzeuge lassen sich Kanäle, die kalte oder heisse Flüssigkeiten führen, konturnah direkt unter der Werkzeugoberfläche fertigen. Das selektive Laserschmelzen als additives Fertigungsverfahren hat hierbei besondere Vorteile, insbesondere können auch sogenannte Hybridwerkzeuge gefertigt werden, d.h. auf einfachen Werkzeuggrundplatten oder –einsätzen lassen sich die komplexen Strukturen mit konturnaher Temperierung additiv aufbauen. In diesem Beitrag werden thermische Simulationen bezüglich der Optimierung des Spritzgussprozesses durch den Einsatz einer Variotemperierung gezeigt. Im Weiteren wurde ein Variotherm-Werkzeug in Werkzeugstahl mit konturnaher Temperierung entwickelt und additiv mittels selektiven Laserschmelzens hergestellt und im Einsatz erprobt. Anhand von weiteren Beispielen werden erfolgreiche Umsetzungen dieser Technologie aber auch die Herausforderungen insbesondere bei der additiven Herstellung von Hybridwerkzeugen dargestellt.

Lecture 2/3
Dr. Andreas Kirchheim | Zentrum für Produkt- Prozessentwicklung ZPP, Zürcher Hochschule für Angewandte Wissenschaften
16:00 - 16:30

Since the first patent application of an additive manufacturing arrangement, based on the
procedure of the stereolithography, in 1984, the additive manufacturing methods win
increasingly in meaning. Just during the prototype production in the approach of the
serial production of plastic parts is often fallen back on one of the varied technologies.
Indeed, the real component is made in these cases directly as an additive prototype.
Thus considerable differences arise with regard to optical and mechanical qualities
between the so made prototypes and the desired parts out of series production. To
handle these problems, an area of application of the additive manufacturing methods is
called the Rapid-Tooling-Technology. On this occasion, the advantages of the additive
manufacturing are used, to build up moulding tools in one fast and direct operation step.
Because many imponderabilities with the use of additive produced moulds for the
injection process the Kunststoff-Institut Lüdenscheid with a group of companies carry out
a project called "RapidTooling". In this project the partners verify the benefit of additive
produced plastic-moulds for the injection moulding process.
The presentation lights up the made investigations concerning the most important
questions in the production of plastic parts out of the injection moulding process. How
many parts, from possibly full and abrasivem injection-material, can be produced in
dependence of a certain pressure material in one printed plastic-mould? And is it possible
to cool down the printed moulds with conventional cooling-technologies to receive the
work piece qualities like with plastic parts out of the moulding process? As the last aspect
the comparison of the surfaces is carried out between the printed moulding parts and the
injection parts.

Lecture 2/4
Stefan Hins | Kunststoff-Institut Lüdenscheid GmbH

Qualified engineer Stefan Hins, born in 1978, finished an apprenticeship as tool mechanic
(plastic) at the company Erwes-Reifenberg & Co. KG in Finnentrop.
From 2001 to 2005 he studied to the south Westphalians FH in Iserlohn mechanical
engineering field Plastic technology.
After his study Mr. Hins worked in the project management of the company Erwes-
Reifenberg GmbH up to his employment in 2008 on the plastic Institute – Lüdenscheid. At
first in the area of the procedure development active, he took over in 2011 the management
of the area of Form part and tools optimization and is responsible there in function as an
area leader for this area.
In this subject he deals in this time intensively with the heat and cool – technologies for
tools and the development of new technologies (e. g. systems like BFMOLD™ and the Zsystem)
and other subject areas in the area of the optimization of tools. In addition, the
field range from application about the simulation and optimization of plastic parts, corrosion
topics applies in tools to tool-technical support worldwide.
Since 2010 Mr. Hins deals with questions all around the subject 3D-printing of tools.

16:30
End
TOP