Forum Medical, Dental & Orthopaedic Technology - part 2


Location: CongressCenter, 3rd floor, Room Panoramasaal

Advice: You can export your favourite lectures directly into your personal calender. Choose the lecture by ticking the box on the right side and then click the download button on the top of the schedule. Please export only one date at a time. 

08:30 - 09:30
09:30 - 09:35
Welcome Carl-Zeiss Saal
09:35 - 10:30

Additive Manufacturing (AM) is an emerging manufacturing technology in the Oil and Gas (O&G)
industry and offers a high potential for significant innovations. This new manufacturing technology
is being actively used and applied in all industry segments (fullstream) of the O&G industry, such as
the exploration of reservoirs by latest drilling and evaluation tools and production (upstream), the
transportation and storage of goods (midstream), as well as refining and industrial power processing
(downstream). In addition, a digital revolution is being driven to modernize the O&G industry by
optimizing operations thru the power of data and analytics.
In comparison to other industries such as medical and aviation, the experience level of additively
manufactured components in O&G is still relatively low. Due to industry specific requirements, which
are different ormore challenging than other industries, current developed and qualifiedmaterials for
AM cannot always be used. High static and dynamic loads, corrosion as well as abrasion and erosion
are significant challenges for all materials. A high reliability of services as well as meeting all
standards of Health, Safety and Environmental is the key in the operational field at the customer site.
The young AM technology needs to overcome all these challenges and needs to be applicable at high
pressure of productivity and cost efficiency.
Due to numerous opportunities of AM, Baker Hughes, a GE company has focused significantly on key
advantages of this technology in product design. The process and material development and its
qualification for production have been the main focus over the last years to enable production of
additive manufactured goods. Enabling new designs, the ability to manufacture new materials and
alloy families, as well as the opportunity to significantly reduce product development time by shorten
multiple design iterations have all been benefits that have found success in the applying this
technology. Furthermore, local satellite production opportunities at decentralized manufacturing
hubs will enable to ability of short lead times even in outlying regions. Thus, AM is an important
technology in the O&G industry and is seen as an elementary part of innovation to bring energy to
the world.

Keynote 3
Christoph Wangenheim | Baker Hughes, a GE Company

Christoph Wangenheim hat Maschinenbau an der Leibniz Universität Hannover im
Diplomstudiengang studiert und diesen erfolgreich Ende 2008 abgeschlossen. Nach einem
Direkteinstieg als Fertigungsingenieur bei Baker Hughes in Celle, beschäftigt HerrWangenheim sich
seit 2012 mit der additiven Fertigung von metallischen Komponenten. Während eines Expat
Aufenthaltes für zwei Jahre imHeadquarter von Baker Hughes in Houston hat HerrWangenheimdie
additive Fertigung federführend im Konzern innerhalb einer internationalen Gruppe an zwei
Standorten (Houston und Celle) aufgebaut und geleitet. Seit Mitte 2016 ist Herr Wangenheim am
einem der größten Technologie Standorte in Celle für die additiven Fertigungstechnologien seitens
der Entwicklung, Material Qualifikation, Design und der Produktion von metallischen und
nichtmetallischen Komponenten für die Produktlinie Drilling Services verantwortlich.

10:30 - 10:45
Session 4
10:45 - 11:15

Additive manufacturing processes allow a high degree of design freedom with regard to the external geometries of components as well as great potential for the integration of defined internal structures. For example, lattice structures can currently be generated uniformly, but also allow grading within a structure.
Mathematically, these structures can be described by discrete data (usually faceted, surface describing triangles) and generated by copying and modifying a defined unit cell. Subsequently, the blending with the body geometry is carried out by boolean operations on the basis of triangular meshes. Common unit cells are mainly based on rod geometries, which are fused at intersections.
In the paper submitted, a generation method for lattice structures is presented, which is based on the discrete description of volume elements (voxel). Geometries are defined by voxel intensities (e. g. grey values) within the voxel structure. The advantage is that well-known algorithms from image processing (smoothing, morphological operations, etc.) can be used. The concrete example shows how grids are generated from a number of freely configurable voxel matrices by means of removal or removal within a structure. The matrices can be generated from different cell types and geometry elements and allow an efficient calculation of the consistent target grid geometry. The advantage of this method is that, in comparison to the triangle description, a robust calculation of the grids is possible, and from a higher level of detail also storage space is saved.

Lecture 4/1
Stefan Holtzhausen | Technische Universität Dresden

Praktische Erfahrung
Seit 01/2018
Arbeitsgruppenleiter Reverse Engineering am Lehrstuhl Konstruktionstechnik / CAD der TU Dresden
Seit 06/2015
PostDoc am Lehrstuhl Konstruktionstechnik der TU Dresden, Schwerpunkt: Verarbeitung diskreter 3D Daten, 3D Druck von Biomaterialien, Applikationsentwicklung
05/2007 bis 06/2015
Doktorand/ wissenschaftlicher Mitarbeiter an der TU Dresden Lehrstuhl für Konstruktionstechnik und CAD
Bereich Reverse Engineering
05/2005 – 04/2007
Studentische Hilfskraft am Institut für Leichtbau und Kunststofftechnik
09/2004 – 04/2005
Praktikum bei Schunk Kohlenstofftechnik im Bereich Composites
03/2002 und 09/2002
Praktikum bei Tillig Modellbahnen GmbH & Co KG

Promotion zum Thema: Erfassungsplanung nach dem Optimierungsprinzip am Beispiel des Streifen-projektionsverfahrens
10/2001 – 04/2007
Maschinenbaustudium an der TU Dresden

11:15 - 11:45

Medical products must meet highest quality requirements while simultaneously providing the product as fast as possible in order to contribute to the maintenance, support or restoration of the human body’s functions. An accelerated product development process can contribute to better healing and rehabilitation. The quality of the patient’s life can be improved if aids, such as implants or prostheses, are optimally adapted to the respective physical conditions and con-structed like bionic structures. For this reason, patient-specific individual pieces are often needed which, in the case of conventional production, entail enormous financial expenditures. Selective Laser Melting enables the cost-efficient production of complex internal structures within the shortest possible time because of the layered construction. In addition, the biocom-patible, processable titanium alloy Ti 6-4 is a suitable material for medical technology products due to its good mechanical properties and medium density.
Within the scope of this article, variants of a short stem hip endoprosthesis are developed for a middle-aged patient, taking into account the advantages of the Selective Laser Melting to opti-mize the strength and the stiffness, e.g. by using lattice structures, while at the same time en-suring operational safety. The focus of the development is the individual, stiffness-optimized shaft geometry and the preservation of as much bone material as possible.

Lecture 4/2
Lena Risse | Universität Paderborn

M. Sc. Lena Risse, born in 1991, studied mechanical engineering at Paderborn University with the degree Master of Science. Since 2016 she has been working as a research associate at the department of Applied Mechanics of Paderborn University. The research topic is the construction, design and optimization of individually adapted, medical aids.

11:45 - 13:30
Lunch break and visit to the trade show
Session 5
13:30 - 14:00

The orthotic and prosthetic market is in a transition. Digital processes promise higher productivity and reproducibility. The gypsum shoproom is not considered as most attractive workplace and yet represents a very important step in the manufacturing process of individual orthotic devices. Can 3D scanners and modeling software, supplemented by CNC milling and 3D printers, replace the plaster?  The author presents numerous points that should be considered when planning and implementing  digital processes. Criteria for the selection of scanners and the support of suitable devices are the prerequisite for productive digital modeling. Taking care during the measure and scan pays off through faultless implementation. Open interfaces ensure lossless information exchange between the components of the digital process chain. The design software is supposed to solve extensive modeling tasks and should offer potential for the future as knowledge progresses. The introduction of digital tools is not completed with a two-day training session, it is an ongoing dynamic process requiring appropriate priority and capacity. The orthotic market should use the experience of other users - especially from the health trade.

Lecture 5/1
Antonius Köster | Antonius Köster GmbH & Co KG

Geschäftsführer der Antonius Köster GmbH & Co. KG

Jahrgang 1965

? Nach dem Besuch der Bundesfachschule der Modellbauer in Bad Wildungen legte Antonius Köster 1993 erfolgreich die Meisterprüfung ab
? Zum Jahreswechsel 93/94 Gründung seines „Handwerkbetriebes ohne Werkstatt“
? Seit 1993 CAD/CAM Service
? Seit 1995 Beratung in CAD/CAM/AM
? Seit 2003 Handel mit 3D Scanner und Software (3D Systems, Artec und HP)
? Spezialisiert auf „organische Formen“
? Über 400 Kunden in Handwerk, Industrie, Kunst, Forschung und Lehre
? Derzeit erfolgreichster Freeform (Software - 3D Systems) Vertrieb weltweit
? Heute beschäftigt die Antonius Köster GmbH & Co. KG 8 interne Experten und 6 freie Mitarbeiter

14:00 - 14:30

Die 100% digitale Prozesskette in der Herstellung patientenindividueller, orthopädietechnischer Hilfsmittel ist bereits Stand der Technik, und doch kann der 3D-Druck einen Orthopädietechniker nicht ersetzen. Es verbleibt eine Schnittstelle zwischen digitaler, additiver Fertigung und dem Orthopädiehandwerk. Fortschrittliche FFF 3D-Drucktechnologie in Verbindung mit leistungsfähigen technischen Kunststoffen spielt an dieser Schnittstelle seine Stärken aus und bietet neben Wirtschaftlichkeit und kurzen Fertigungszeiten vor allem größte Flexibilität zur handwerklichen Modifikation und Nachbearbeitung. Anhang von Praxisbeispielen (z.B. Prothesenschäfte, Fuß-/Handorthesen) wird der digitalisierte Produktionsablauf veranschaulicht.

Lecture 5/2
Jonas Kühling | Kühling&Kühling GmbH
14:30 - 15:00

An Hand einiger Fallbeispiele wird dargestellt, wie mit den Möglichkeiten der Additiven Fertigung seit
nunmehr fünf Jahren am Standort Berlin, neue Versorgungsformen möglich werden und wie die
Umsetzung vom Scan, bis zur fertigen Versorgung erfolgt.
Datengewinnung mittels CT/DVT, MRT, Scan; Weiterverarbeitung mit geeigneter Software und der
Auswahl der richtigen Drucktechnologie, sowie des richtigen Materials, führen zu erstklassigen
Versorgungen, die mit dieser Technologie weltweit Verbreitung finden können.
Neue Kooperationen sind möglich, die Fertigungszeiten verkürzen und Produktqualitäten erhöhen.
Lassen Sie sich mitnehmen auf eine digitale Reise in der Welt der Medizin!

Lecture 5/3
Andreas Velten | IFA3D Medical Solutions GmbH
15:00 - 15:30

Manufacturers of long-term medical implants use silicone materials to design a wide range of products, such as tubing and drains, drug delivery systems, pacemakers, vaginal rings and audiology applications.  Silicones used in long-term implants must always be biocompatible, reliable, precise, flexible and durable, efficiently ensuring the protection of sensitive components from corrosive body fluids.
This technical lecture will introduce the new challenges and benefits of additive manufacturing (AM) to make personalized silicone elastomers against the traditional ways of conception/processing such as industrial injection molding.
Due to its low elastic modulus and poor shape retaining ability during the layer-by layer process, silicone elastomer AM could be technically challenging and a good understanding of the relationships between input and output parameters during the AM is key. Mastering such parameters along with the 3D printer machine and the silicone chemistry have allowed us to predict the aspect but also the mechanical behavior and performances of the 3D printed part. As an example, 3D-printed silicone elastomers combining multi mechanical performances can be now obtained in one shot with one or several products for each medical device. The results as implants fit perfectly with the reality.
The AM of silicone elastomeric materials to directly create the 3D freedom shape of silicone elastomer is also progressing very fast with the use of new reliable, accurate, printing equipment. It is therefore essential to get such level of performance since the question of qualification of the full chain of medical device manufacturing which comply with regulatory issues is key for the future of this industry.

Lecture 5/4
Jean-Marc Frances | Elkem Silicones